MINUTES OF THE MEETING OF THE JOINT APPROPRIATION SUBCOMMITTEE ON EDUCATION

February 12, 1981
0
$-\infty$
The meeting of the Joint Appropriation Subcommittee on Education on the Regent's modifications was called to order at 7:35 a.m. on Thursday, February 12, 1981 by Chairman Donaldson in Room 104 . Capitol Bldg., Fielena, Montana.

All members were present including Curt Nichols and Bruce Shively, Fiscal Analysts.

GLEN LEAVITT gave the Budget Office recommendation for the modifications as requested by the Eoard of Regents. There are three modifications one of which the Regents did not quite request in that form. (See EXHIBIT E of 2-10-81 minutes.) That is the Operational Base Adjustment. The request that came into the Executive was for $\$ 1,200,000$ for the first year and $\$ 1,300,000$ for the second year for all the units. He stated that they cut them about in half and put them in a pool of base adjustment money. This recommendation by the Budget Office is for $\$ 750,000$ per year and would be distributed by the Regents.

MONTS (Montanans on a New Track for Science)
GLEN LEAVITT stated that they are requesting $\$ 200,000$ for $F Y 82$ and $\$ 300,000$ for $F Y$ 83. It is a program to get Montana up to par with other states in research. The National Science Foundation gave a grant to the units for $\$ 2,350,000$ for five years. The systemwide request is for Library Acquisitions. This was first put forward as a request for $\$ 1,400,000$ for the first year of the biennium and the Regents changed it to $\$ 700,000$ for each year of the biennium.

JAMES MICHELOTTI, Director of Computer Services, gave the requests in addition to the Regents for Montana Tech. (See EXHIBIT C of 2-10-81.) He discussed the handout in regard to their computer request. (EXHIBIT A) There are close to 900 stuadents using the computer out of 1,700 students. He stated that they had looked at all the alternatives, the first being that they could get service outside, either from the State of Montana or at Bozeman. That works for single shot types but not very well for a student. About one year ago there were from 25 to 30 students who had to use some sophisticated engineering research application and now there are over 200 who need to use this. In order to take care of the need we have requested an add-on to our existing computer. The computer they presently have is the PDP $11 / 70$ there are over 50 terminals running off this. The add-on they are requesting is called a virtual machine. It has capability of handing engineering and research jobs.

MR. MICHELOTTI stated that in the budget they were given a certain amount for 1983. The problem exists right now and

Minutes of the Meeting of the Joint Appropriation Subcomnittee on Education

PAGE 2
February 12, 1981
-
somehow a solution to this problem must be found. He stated that they were given $\$ 177,000$ in the Executive budget for the computer and based on their estimates that is not enough. They will need somewhere around $\$ 17,000$ for $F Y 82$ and $\$ 320,000$ for FY 83 for this computer in order to get it. He also stated that the need for the computer is not due to the new science degree granted by the Eoard of Regents. It is needed because of the research and engineering at Montana Tech.

DR. VERNE GRIFFITH, Director of Research discussed the modified request in addition to the the Regents for an X-Ray Diffractometer. (See EXFIBIT C of 2-10-81 minutes.) The equipment they now have was purchased in 1948 to 1951. It is unreliable. Since 1948 there has been a great concern with radiation safety. This equipment is not fit with today's standards. This equipment is not what the graduate will encounter when he goes to work. (EXHIBIT B)

CHAIRMAN DONALDSON asked what was an X-Ray Diffractometer used for.

DR. GRIFFITH stated that is is used to tell us about crystal structure.

SENATOR JACOBSON asked how many students are involved in these courses.

DR. GRIFFITH stated that there are ten seniors in metallurgy.
COMMISSIONER RICHARDSON gave an overview of the modifications recommended by the Board of Regents and the other special issues. (See EXHIBIT A of 2-10-81 minutes.) The first special issue is the revenue estimates built into the LFA's recommendation. Several of the colleges and universities feel that those estimates are too high. Particularly on the other funds. A lot of the revenue estimates are heavily dependent upon federal funding of contract research. He stated that they are concerned about cutbacks in federal programs.

COMIISSIONER RICHARDSON stated that the second special issue is the enrollment projections. Some of the campuses are not in accord with the estimates made by the Commissioner's office and by the LFA. This is related to the contingency fund. They are concerned that if this committee does develop relatively conservative estimates then the committee would need to consider being a little more liberal with the contingency fund.

The third special issue is indirect costs. And the fourth is computers. The Regents approved three new computers. Eastern is requesting $\$ 551,000$ for a new main frame computer. Montana

Minutes of the Meeting of the Joint Appropriation Subcommittee on Education

PAGE 3

February 12, 1981

o
Tech is requesting $\$ 337,000$. University of Montana is requesting $\$ 364,000$ and western is requesting $\$ 7,250$ for a printer. (EXFIBIT B)

DR. IRVING DAYTON gave a presentation of the MONTS PROGRAM (Montanans on a New Tract for Science) which the Board of Regents have recommended, This modification is directed at the need for continuing state support to develop research in the University System, The National Science Foundation gave them a grant for $\$ 2,335,000$ over a period of five years. The basic idea is to use it as a developmental program. This amounts to seed money to get people started and is not aimed at long-range support. They are asking for $\$ 200,000$ for the first year and $\$ 300,000$ for the second year. Once these people are able to move out on the national scene and compete they can bring back additional grants and additional equipment.

DR. GARY STROBEL from Montana State University spoke in support of the MONTS PROGRAM. He stated that if they don't get the funding the program stops in 1981.

Testimony was given in support of the MONTS PROGRAM by:
Dr. Gary Strobel, Professor of Plant Pathology: Mel Ryan, Vice President of the Montana Power Company; Leland Walker, Chairman of the Board of Northern Testing Laboratories (EXHIBIT C) .

CHAIRMAN DONALDSON asked if we are talking about an act of faith on the part of the state or a committment on the part of the state relative to the match.

DR. DAYTON stated that they are. They put together a proposal that had a scientific plan in it. The foundation put a limit of $\$ 3,000,000$ on the five-year plan. They made a criteria in putting these proposals together; a "state committment" to the program. He stated that they felt that they should as foundation money tails off be building in state support and maintain the intent of the program. He also stated that they thought they would start and move it up year by year so it can be built in. Their proposal was accepted in the context of this proposed match.

CHAIRMAN DONALDSON asked if it is funded for $\$ 200,000$ for $F Y 82$ and $\$ 300,000$ for $F Y 83$ if it will reflect higher amounts in future years.

Minutes of the Meeting of the Joint Appropriation Subcommittee on Eaucation

PAGE 4
February 12, 1981

DR. DAYTON stated that yes, it reflects a $\$ 400,000$ to $\$ 500,000$ match the following biennium. That biennium would complete this program. He stated what they would like, the budgeting formula does not recognize; that is research. They would like in a long run to have some state support for this project as the National Science Foundation drops out.

CHAIPMAN DONALDSON asked if there would be any spin off for the other campuses.

DR. DAYTON stated that it would in a couple of ways. The competition is not only open to academic scientists, it is open to any scientist in the state.

REP. BENGTSON asked if they cooperate with industry.
DR. DAYMON answered that it is accessable to people in government and private business. When they developed the proposal they sent notices all over the state and got back 112 proposals from individual scientists.

REP. BENGTSON asked if the non-state scientists provide any of the matching funds.

DR. DAYTON stated no, at this point none was proposed for funding. This is looked upon as a state program to develop a state resource.

COMMISSIONER RICHARDSON stated that the second modification is for Library Acquisitions for $\$ 1,400,000$.

Testimony was given in support of the IIBRARY ACQUISITIONS by;
Donald Habbe, Academic Vice President at University of Montana (EXHIBIT D); Elizabeth Morrissett, Head Librarian at Montana Tech (EXHIBIT E); Paul Dunham (EXHIBIT F); Ellen Newberg, Head of Technical Services (EXHIBIT G); Randall Collver, Professor at College of Great Falls (EXFIBIT H).

PRESIDENT VAN de WETERING spoke with reqard to the modifications for Eastern Montana College. The Washington Library Network (WLN) proposal is for $\$ 368,000$ for the bienniun. For the first year it is for $\$ 221,000$ and the second year it is $\$ 146,000$. This is a proposal of all the units vinich benefits the entire system. It will provide membership in the WLN and the hardware to function as a member. It is not a substitute for a continuing acquisitions program. Individual collections will still be maintained. But it does provide an opportunity to share the resources of all the libraries within the system. Fe stated that they have talked about this problem for a long time. Their need is to share the resources

Minutes of the Meeting of the Joint Appropriation Subcommitree on Education

PAGE 5
February 12, 1981
of the University System across the state. The three major areas of opportunity are: (1) link all libraries together so we can use them to a maximum advantage; (2) we will be able to selectively acquire collections and carry the acquisition budgets farther; and (3) there is real efficiency in economy in the technical side of the library.

COMMISSIONER RICHARDSON stated that there is a group called "Friends of Higher Education" who are concerned about the University System. Two of whom are present and would like to testify, They are Bill Schmidt from Helena and Ian Davidson from Great Falls.

BILL SCHMIDT gave his testimony with regard to the faculty salaries. Recently the University of Montana was involved in the review of their programs by by accreditation teams and the study by that team indicated that there should be at least six to seven faculty added to the University of Montana. Approximately 50% of the faculty members should be PHDs. There are approximately 200 PHDs coming out of the educational pipeline each year and there are 1500 jobs available.

IAN DAVIDSON gave testimony in regard to the University-and the MBA (Masters of Business Administration).
PRESIDENT BOWERS gave his presentation in regard to the MBA modification for Eastern Montana College. Currently the University of Montana offers two MBA programs, one in Missoula and one at Malmstrom Air Force Base which is totally funded by the Air Force. There is evidence of a strong demand for a MBA program in Billings. The most effective way in which to offer that program in Billings is to use the combined resources of the University of Montana, Eastern Montana College, and Montana State University. (EXHIBIT I)

PRESIDENT VAN de VETERING gave his presentation for the MBA program. He stated that there has been a growing interest in Billings for this program. He stated that they surveyed all the graduating seniors and found that 55% had high interest in Billings for this program. In addition to that they have started a survey within the community and again find a nigh sense of need. The number of people who showed interest in the program is 203.

PAUL BLOMGREN, Dean of Business Administration for the University gave his testimony. He stated that Larry Jones, Academic Vice President at Eastern informed him that there was a strong demand for an MBA program in Billings. He stated that they put the program through the Board of Regents and they passed it.

Minutes of the Meeting of the Joint Appropriation Subcommittee on Education

PAGE 6
February 12, 1981

MR. BLOMGREN stated that the degree would be offered by Billings. They would use the faculty from Eastern and Montana State University on a time release basis, Eventually the program will have to have four or five full-time faculty members. He stated that he checked how much computer time they use for the MBA Program (Masters of Business Administration) at the University of Montana and figured they would use the same amount at Billings.

CFAIRMAN DONALDSON asked why we don't just improve the situation at Missoula and if there were advantages he was not aware of taking it to Billings.

MR. BLOMGREN stated that his understanding was that in the surveys made by Mr, Jones approximately 90% who wanted the degree are already employed in Billings.

COMMISSIONER RICHARDSON stated that the last special issue he wanted to discuss was for the allocation of repair and maintenance funds. (EXHIBIT J) The LFA is recommending \$1,090,000 for the first year and \$1,188,100 for the second year. The Interim Finance Committee took the position that while this money should be built into the budget the Commissioner's Office should come up with a recommended approach for allocating this money to the six universities. He stated that they have done that using a distribution based on gross square footage for the state supported buildings. This does not take into consideration such factors as lawns, roads, parking lots, etc. Each President has agreed with this distribution and is presented to you at this time.

REP. KEN NORDTVEDT gave his testimony in support of the indirect costs that were incurred while doing research at Montana State University. He suggested that perhaps 85% of indirect costs should stay on campus and be earmarked for paying the legitimate indirect costs and maybe 15% sent to the state.

TOM NOPPER, Director of Administration at Montana State University discussed the indirect costs. (EXHIBIT K)

RAY MURRAY, Vice President of Research at the University of Montana gave his testimony in regard to indirect costs.

CURT NICHOLS stated that the total indirect costs for the systems projected for 1982-83 were $\$ 2,800,000$.

Minutes of the Meeting of the Joint Appropriation Subcommittee on Education

February 12, 1981

DR. VERNON GRIFFITHS, Director of Research at Montana Tech discussed three points about indirect costs. First the validity of the indirect cost projections for the next biennium. At this time the prognosis is that there will not by any MFD research of the Department of Energy. He stated that if there are severe cuts made it looks like they won't come close to the projections. He asked the accountant what they might recover from signed contracts and based on that their recovery is about $\$ 79,509$.

Meeting adjourned at 11 a.m.

pb

The Computer Center at Montana Tech is one of the busiest and heaviest used facilities on campus. On any weekday during the academic year approximately one-half of the total student body will use the computer. Tech's Spring Semester/1981 course offering include over 20 courses that teach computer concepts. In addition to regularDy scheduled day classes, computer courses are taught on every weeknight except Tuesday. These evening courses are heavily attended by local business people, teachers, etc. who are beginning to utilize computers in their work. Needless to say, the computer is an integral part of a students education today especially an engineering student's. However, on Tech's campus this was not always the case.

In the early-to-mid 1970's Tech had less than 5% of its total student enrollment utilizing the computer (Illustration 1). At that time a representative group of Tech's instructors, administrators and researchers, called the Computer Committee, was assigned the task of improving the Computer environment on campus. A detailed study resulted, specifying needs, objective, goals, etc. In January of 1976, after over a year and a half of efforts by this group, a new academic oriented computer arrived on campus. The main selling point of the computer was that it would provide hands on experience to the student via computer terminals. The machine cost $\$ 106,000.00$, was equipped with 3 terminals and according to the vendor could be expanded to handle the needs of Tech campus for at least 5 years.

Fortunately, the vendors promises were true. On the fifth annversary of this machine's arrival, January 1981, the machine has grown to support 45 terminals (Table l, lists on and off campus terminals).

Terminals are located in most every building on campus and several departments (Mining, Computer Center) have more terminals today than came with the original machine. Today, Tech has approximately $\$ 250,000.00$ worth of equipment. The machine still has some room for expansion and probably will continue to serve the college for at least 3 to 5 years.

Tech has seen one major change in its computer usage over the past 5 years and this is the main reason for this paper. Tech's present computer is a mini-computer, a very powerful mini-computer, which is very good at handing many simple jobs at the same time. Until recently, the majority of users of the computer were the novice type, with simple requests. However, the novices are now becoming sophisticated. Tech's present computer cannot handle sophisticated large jobs. The problem is especially noticable with the engineering users and in Research activities. Engineering sophisticated computer usage has grown more rapidly than that of any other group of users. (Illustration 2). The applications that engineers run on computers, such as simulations, and models are very sophisticated and will not run on Tech's present computer. Almost every engineering department on campus is making complex use of the computer. As of this writing, Mining, Petroleum, Environmental, Metallurgy and Engineering Science people are at a standstill with computer applications beyond the capacity of Tech's existing computer. These applications are practical, every day activities that todays modern engineers are using on the job. This situation has been building. A year ago, only one department had this problem. Today, there are five departments with
approximately 130 to 200 students effected.

There are 2 possible solutions to this problem. The first, which has been attempted, is to purchase computer service from an organization which has this computer capability (Dept. of Ad - Helena, MSU). The cost of providing computer solutions to sophisticated engineering problems through contracted services is expensive and has resulted in one time shots which in a student educational environment is impractical.

The second alternative is to enhance the present computer resources to handle this type of activity. Tech's present computer is modular in design with tremendous expansion capability. However, it cannot handle without some assistance, large sophisticated jobs. The key words here are "without some assistance." This solution then is to couple Tech's existing computer with one that can handle these jobs (Illustration 3). The computer that handles sophisticated jobs (labeled Virtual Machine) is a stand alone computer that can run independently of Tech's present Computer (PDP 11/70). This solution would enhance Tech's present operations and permit it to handle complex engineering applications. Tech's present computer would continue to handle all users. The PDP $11 / 70$ would determine whether or not a users request needs its own services or the services of the new computer. This concept of connecting computers is called "Networking."

Montana Tech and its people have worked very hard over the past 5 years to provide state of the art computer concepts, tehcnology and
equipment. The Computer Center at Tech is serving the college very well. In order to continue to do so the addition of the Virtual Machine is a necessity. Thank you for your time. Please feel free to call me if you have any questions. (496-4271).

James F. Michelotti
Director of Computer Services

JFM/ms

1800

TERMINAL DIRECTORY

TABLE 1 (continued)
 TERMINAL DIRECTORY

OFF CAMPUS:

COMPUTER USAGE
BY
USERS GROUP
79-80
78-79
77-78
76-77
UNIUERSITY SYSTEM NETHORK

COMPUTER USERS BY MONTH

Personne

instruction:
Computer Science Math 6
Engineering 3
Met \& M.P. 4
Osha \& Env. 3
Physics 3
Chemistry 2
Geology 1E.S.
Petroleum 2
Arts \& Science H.S.S. 2
SUB TOTAL 27
Adrinistrative
Computer Center 2.5 Bureau 1.5
1963-65 Physics 305 11967-69Physics 426
1969-71 Math 2271
Math 4261
Math 480 1-4 1-4 1-5
1975-76 Math 140 2Math 2272
Math 228 3
Math 250 1-5
Math 480 1-5
1980-81 C.S.Proposed Computer ScienceDegree
Credits

to Computer-Science Courses, Colleges Scramble to Find Professors

lack Magarrell
ei slmments leveling off,
hter, and graduates jobs, computer science ing more success than it
$\mathrm{d} \mathbf{m}$ computer scientists eater than the supply, acsi ate.
computer-science : rapidy-by 20 per cent - at some institutions.
ro industry are grabbing th alary offers that have 0 per cent in the past three
of culty members in the unversities to scramble d parr-time teachers.

it

 regon. enrollment nc courses is up 34 per agerFooding into computing." H letniemi, head oi Or${ }^{4}-$ computer and infor-

r-srience departments

 ry. le says, "as much as aime temporary or partniy way we can deal withI is his department has intome faculty members embers hired on a part\because sis
s,we has been looking people-consultants or vat-indusiry-who have te icience and might be

Te-rhing
sc ntist on the Oregon Wans, left last month to job with General Teleire ics Coporation at be received as an

C-egon with a faculty fl to fill, Mr. Wang omhe National Science xe with him the $\$ 22,000$ or esearch grant he re\therefore iversity.
aving jub at the G.T.E. ham. Xass. will onow my time and cefort for Be fall guarter at Ur. We: :woclaces, each \& Suors a w = k for four - of the clases had 120

Bhtion has bereaced sdecreased," he stys. antendurs."
E A o rected jor of al Beviness Datanes atond Teephone and

poonaction by national center por educatioy statistics

Jobs for computer specialists

projection by bureau of labor statistics
"It's an impossibility to fill faculty positions," says A. Joseph Turner, head of the computer-science department at Clemson University.

He says he has to compete with other universities, as well as with industry-but the industrial competition is $b y$ far the toughest.
"There seems to be a slight increase in the number of Ph.D. graduates coming out this year," he says, "but more of them. than before are leaning toward industry."

Mr. Turner says he talks to graduates in computer science who say they are interested in academic jobs, but they often change their minds and accept higher-paying jobs in industry. There's no use even trying to attract the graduates who list themselves as lowing for joh, in industry. he says.

'The Funcs Aren't There'

In seeking more money to expand their programs and compete with industriai salaries, Mr. Turner says, computer-science deper:nents run into stringent budget lim-its-set by cither the university or the ate-that were tated on an catlier expecistion of little wir no growah.
"We're in a peried of rapid grouth and the fund aren't there," Mr. Turnee segh.

Enrollment in computer-science courses at Clemson has been increasing by about 20 per cent a year, he says. Enrollment rose about 50 per cent this year because of a change in the business-school curriculum that caused both freshmen and sophomores to take a required computer course in the same year.

Some 200 Clemson students chose to major in computer science this year, the first in which the university offered bachelor's and master's degrees in the field, Mr . Turner says, and 100 freshmen have been accepted as computer-science majors for next fall.
"Before it's over we may be one of the two or three largest majors on campus," he says.

At the University of 1 llinois at Urbana, the number of company recruiters locking for graduates in computer science increased from 35 in 1971-72 to 60 in 1975. 76 and 196 in 1979-80, according to David R. Opperman, placement director for the college of ergineering.

The Colicge Macement Comeil reports that the avenge monthly stary cfered to bew grobumes wh twester's dogres incomputer ciencerocefromste in 1974
 an incieave of of per cent in six years.

In coming years, the lu higher salaries may attra dents to computer-scien forecasters have anticipa

Projections by the fede National Center for Ed show the number of stu each year with bachelor: puter and information s from 7,580 in 1979 to 11 , yearly increases averagir

Employmentto Double b)

Computer science will of study for a growing sl during the 1980's, acco projections. In 1970, or thousand bachelor's degr puter science. That share thousand last year. By 1 thousand bachelor's degr U.S. are expected to be ence. By 1988 , it will be e thousand, according to t tistics center.

The Bureau of Labor ployment projections sc lication this spring, estim mert of computer spec than double between 197

In that period, says Pa bureau's occupational-c jobs for systems anaiyst: increase by 120 per cen programmers, by 102 pe for computer operators, to 850,000 ; and for comp nicians, by 154 per cent :
One consulting organ mated that the number grammers hired by emp per cent in 1979. Comp with the previous year, tems programmers-the responsibilities than ce: mers-was up by 35 per iem analysts-uho ple wort of sysiems premer puier programmers-hy

Demand Up 25 PCL This

The derand for profes the computer field will than 25 per cent this y a surey by amoter co wort.
sha Wh. Hamben. 2 . gher-science deperane U, of Mossouri :a Ros in 1,78 Americal co ${ }^{\prime}$:
 chs -a, h. mamber necow at x Wat, and icc an o nestalle dacon:
(ahorma wotre mu: bin in \therefore an n. ! In llo. -

EOMMDBuEiG

Continued from Preceding Page Ph.D.'s it needed, followed by Maryland with 73 per cent and lowa with 61 per cent.
"No state is even close to producing its need" at the bachelor's- and master's-degree levels, he says.
Two-year colleges and vocational schools in some states were producing more computer specialists than were needed, but problems of oversupply at that level were avoided because of "the severe shortage at the four-year level," Mr. Hamblen says.

A Massachusetts-based computer company, Wang Laboratories, has attempted to ease the problem of anding specialists in software ergineering by setting up a new graduate school just for that purpose.

The Warg Institute of Grucuate Studies, located in Tyr.gsboro, Mass.. was established as an independent, nonprofit graduate school whith a 5 :miltion gift from the family of Ao Wang, president of Wang Laboratories. The first classes in a program leading to a master's degree in software engineering began last month.

NSF Study

The National Science Foundation's latest national survey of science and engineering personnel found that between 1975 and 1978 employmed of computer specialists rose by 30 per ceni. The only other science eategory in which employment increased furing that iwo-year perion. azeording io the study, was environmental seience, with a growth of 20 per cert.
The study aise found that:

- Four out of five computer specialists found jobs closely reiaied to their degrees, compared with about one out of seven for gracuates in mathematics and the social sciences.
- Empioyment of computer sper cialists in colleges and universities increased by more than 25 per cent between 1976 and 1978. The number of bachelor's degrees granted in compurer seience also increased fy more then 25 per ceat in that period.
- The number of computer specialintsempioy din the L.S grew by 3. per cent between 1974 and 1976; in the following two years it grew at nearly 10 times that rate.
\rightarrow The 234, ©00 computer speciatists employed in 1978 included 40.690 women. Only 600 computer specia!-ists- 100 of them women-were unemployed and looking for jobs in 1978, accordity to the N.S.F. repont.
\rightarrow Of the erpoploy compoiter speciatists in 1478, only 17 , gow were in acatemic posts, conpared wh 173, wo in temibes. ard industy. 14.600 in the federal government, and 26.6e, working for varions other himis of combeyers
- The number of emphosd comFator secuntints with dozerat de-

By Jack Magarrell

Richard M. Cyert wants all students at arnegie-Mellon University to have their Own personal computers, no matter what their field of study

Mr. Cyert, who is Carnegie-Mellon's resident, is working on a plan that within five years would require each student to nurchase a personal computer, perhaps th the aid of university loans. A program * provide a computer terminal for every faculty member at Carnegie-Mellon is alady under way.
Mr. Cyert's plan is one of the more damatic examples of a move toward universal student and faculty access to computs. Among the others:
\rightarrow At Northern Mlinois University, a proposal to stop students from connecting cir personal computer terminals to the diversity's main computer raised a flurry Of protests from students who had invested as much as $\$ 2,000$ each in such equipment.

- Stanford University reported last fall \because at it was equipping its deans and other top administrators with computer fermi3 they could communicate with each er electronically
At Dartmouth College, an Carly leader in offering all undergraduate students
cess to computers, terminals are avail-
de for use by students from $7 \mathrm{a} . \mathrm{m}$. to 3 am. Dartmouth Kiewit Computation renter has placed about 400 computer ter1 hals on campus, and as many as 263 em be operated at any one time. They are shared by 3,000 students, whose col-

President Richard M. Cyert hopes that, within five years, all students at Carnegie-Mellon University will be required to have computers.
liege identification numbers permit access to the computer and also serve as an account number for allocating computer time.

- At the Massachusetts Institute of Technology, Fernando J. Corbato, director of computing and telecommunications resources, predicts that within 10 years every member of the faculty and professional staff who wants one will have a" personal computer of significant potency."

When Carnegie-Mellon's President Chert talks about requiring personal computers, he doesn't mean little hancineld calculators or even the Apple or Radio Shack devices sold for home use. He means computers equal in power and memory capacty to units that today cost about $\$ 150,060$ and require a pickup truck to carry around.

Within five years, Mr. Cyert contends, personal computers approaching that ca-

Continued on Page 14, Column 1

Computers

pacity will be small enough for a persi to carry and will cost only $\$ 2,000$ ic $\$ 4,000$. Low-interest university lowers could be offered to help students buy their computers, he says. in preparation for the day when ps oral computers become a general remirement, officials at CarnegieMellon are studying how personal computers would affect educational pi rams and costs.
n interview. President Cher

Kd that the fine ar: probably be the "most marginal" area personal computers, but he mme dy began to cite exceptions: a "meat need" for computers in archilecture and design, possibilities for th - use in music, and, in the drama de moment. use of computers to conir mage lighting.
In my be fine years before Carnebunion rodents ate regwird o hacempaction Cyertsas but sits expects to compere the ins ollaaim -of indavaal terminals for all demon and department leads.
Also within the neat two years, he apps, terminals will he provided for why member in the chemicaling deportment as a first simp
saving a terminal for every rherin every deratment. os faculty members asers, says Matt's Mr. : Choulthe "not gad-
: So Imgarouns but
:? of the notes

Continued from Page 1

conceptual concerns can ignore it." At M.I.T., Mr. Corbato says, high proority is being given to planning a stancard method of communication among the institution's many separate computer systems.
Money for educational computers is scarcer than money for research computers, Mr. Corbato says, because research contracts include computer costs. Educational computers have to compete with a multitude of ane clams on the institution's general education budget.
At Northern illinois, more than 4, (h) 10 students use computer fermihals in laboratories set up for that pourpose around the campus. But about 100 students do their computer hark on their own terminals without laving their apartments or dormitory :onions.
Those ing sudentsprofeded vocifembirlas: month when a faculty gl te allowed to use ti f e university computer through their home terairats.
Faculty members find complained that dey were having rouble g thing access to the computer because of its henry use by students.
Student arganations argued that the proposal would not only deprive students of the use of terminals that bed cost there: from 5500 to $\$ 2,00$ each but woblabofree sm a to use already crowded facilities in the wivarsity hamenties. As ar-uht , the
control the growth in use of Northern Illinois's computer facilities.
The number of student-owned terminals at Northern Illinois can be expected to increase in the next few years, Mr. Pembroke says, and rules will be needed to assure stujemts and faculty members a fair share of available computer time.
New equipment installed last spring increased computer capacity at the university by 400 to 500 per cent, he says, but increased use-due in large part to a 50-per-cent growth in enrollmont in the computer-science depart-ment-caused computer performance to bug down hast fail
a biscIPLI:AE IN CRISIS

```
A Feport
November 21, 1980
```

On July 12 and 13 , 1980, the biennial meeting of Computer Science Department Chairmen was held at Snowbird, Utah. Inis meeting, which is organized by the Computer Science Eoard (CSB),* is a forum for the heads of the 67 departments in the us and Canada that grant FhDs in Computer Science. The meeting was attended ly 56 department heads or their representatives, and by 6 observers from industry and government. This report was developed during the meeting as a result of intensive discussions about the crisis in Computer Science. This report was endorsed by the entire assembly.

Respectfully subritted,
Peter J. Denning, Editor
Edward Feigenbaum
Paul Gilmore
Anthony Hearn, Past CSB Chm. Robert W. Fitchie, Program Chm. Joseph Traut

* The current chairman of the Computer Soience Board is

There is a sere mapomer shortage in the computing field. It i: most armt.: al the PhD level: the supply of new PhDs is about 15% of ti:e delmand. The crisis has been precipitated by exploaive prowth of the computing field with no matching growth of univerity budgets in Computer Science. Unless the tread reverses, we will soon lose our lead in computer technology because we cannot train enough computer experts and because we ammot conduct the basic research to ensure a continujni jupply of new concepts for the long term future. Some of the symptoms of the crisis include:

About 200 new Phins graduated in 1979 (down from 256 in 1975) as compared with 1300 positions seeking PhDs.

Fewer than 100 new PhDs sought academic positions as compared with over 600 academic positions known to be open.

Undereraduate enrollments doubled since 1975 with only nominal increase in lab space and faculty size ove: life same period.

Irterse competition for computer specialists has projuced record salaries: new MS égree holders get offers matching full-year academic salaries for new f'hDs; experienced assistant professors get industrial offers as high as $\$ 45 \mathrm{~K}$.

To generate a greater supply of new faculty and other researchers, we need to enlarge the pool of students in PhD programs. The department heads unanimously agreed that the required environment comprises:

Computing facililies capable of sustaining experimental research. (An appendix to this report shows that this requires a capital investment, per researcher, of $\$ 30 \mathrm{~K}$ for good facilities to $\$ 75 \mathrm{~K}$ for advanced facilities.)

More time for faculty to supervise graduate students in research.

Increased support for graduate research assistanls.

There js a severe mamower crisis in Computer Science. There are acute shortaec: of well trained computer people at all levels, especially the PhD level. The PhD shortage is especially serious because it threatens our ability to conduct basic research in Computer Science and to train the next generation of computer experts. Some of the symptoms manifested among the 67 PhD-eranting Computer Science Departments in the $U S$ and Canada are:

The total number of Phy Computer Science faculty in the U.S. increased from 805 in $19 \% 5$ to 825 in 1979. The net gain, 20, is 1.7% of the total of 1130 PnDs graduated in the same period. Most faculty outflux is into industry, not retirement.

The total nunter of PhD graduates, the next generation of researchers and teachers, has decreased from 256 in 1975 to 200 in 1980 ;

In 1980, there were 1300 jobs advertised for these 200 PhDs:

In 1980, fewer than 100 of these PhDs chose academic careers, and they had over 600 academic positions from which to choose;

Undergraduate enrollments have doubled since 1975, while raculty size and lab space have remained nearly fixed;

Classes sizes are significantly higher than in other science departments; and

Experimental facilities in most departments are obsolescent and inferior to industrial racilities.

This situation seriously threatens the ability of Computer Science Departments to continue developing the skilled people reeded butl: by our intornetion prodessing industry and
 cur ability iuctioure, I houth bisiorojearih, a continuirag supply of new oonceßl: for the lone Lerm future.

The crisis in Computer Sejence results from explosive growth of the computing indastry - the "computer revolution" - since 19\%s, a period in which there has been almost no growth in Computer Sciencu laboritory facilities or in the number of Computer Seience raculty.

Experimental seience is expensive. Although many Computer Science Departments have long recognized the need to strenginen their experimental facilities, the required resources have not been available. The physical plant has been frozen as it was in an era when computing was much less importert; butgets are not eroning beyond inflation because the total pool of college-age students is apparently not growirs. Some help is now beginning to appear from the federal agencies and from industry, but much more is needed.

Sixty percent or our PhDs take careers in industry. Eacheiors degree holders get starting industrial salaries averaging $\$ 20 \mathrm{~K}$, masters $\$ 26 \mathrm{~K}$, and PhDs $\$ 32 \mathrm{~K}$; academic annual salaries for new PhDs with summer support come to about $\$ 27 k . \quad H i g h$ industrial salaries lure qualified students from graduate school, therety depleting the pool entering the pifeline ard guarantueing that the shortages will persist.
 in droves to our depirtaents. Eager for researchers,
 he are eatimb our secd curn.

A small shortage in an expanding rield would be healthy. But a ratio of 2:13 in supply to demand for PhDs is not healthy. Th: Computer Sicience crisis results from dynamic techmology pulling on static universities. Some federal agencies (e.g., HSF, DAKPA, and ONR) are now allocating additional resources to experimental Computer Science. We believe this to be a crucial first step. Universities have been vexingly slow in reallocating resources. Much instructional computing still relics on punched cards; many students experience lone lines for terminals and keypunches. Most Computer Science Departments are seriously cramped for space. Although industry has benefited from the research and training provided by academic Computer Science, it has not, with some notable exceptions, provided financial support. Someone has said: We are killing the goose that laid the golden egg.

Students are enrolling in record numbers in our underEraduate programs. While many are attracted to computer Science by its excellent careers, a growing number is being encouraged by the "computer revolution" to take introductory and intermediate programing courses in order to be familiar with the computer as a tool in other disciplines. The result? Existing terminal racilities and computing centers cannot handje the loud. Gass sizes balloon. Lab facili-
lies are insufficiont. Facalty consider industrial positions.

The next section describes the nature of Computer Science. Subsequent sections present our recommendations, which we believe will improve the national research environment and ensure a supply of computer experts during the next decade and beyond.

The Nature of Computer Science

University Computer Science research provides the base of knowledge for the nation's information processing technology. Computer Science, called "informatics" in Europe, studies the representation, transformation, nature, and philosophy of information. It encompasses both theory and experiment.

Algorithms for processing information, the complexity of algorithms, the theory of computability, and models of information handing are parts of Computer Saience. These parts have a strong mathematical tradition.

Applications of knowledge representation such as artificial intelligence, data bases, graphics, image processing, robotics, and automation are parts of Computer Science.

Tite sirusturg of mardiate and soflware systems to process infurmation, al forilums and proceises in such systems, and the functional relitions amone comonents of such systems are pirts of Computer Seience. Computer Science thus studies the efricieney of implementations and experiments with them. In areas such as Very Large Scale Integrated (VLSI) design and communications, Computer Science overlaps with Electrical Eneineering and benefits from cooperative work.

Computer Science studies the processes of information flow and transfornation that underlie many professions, such as medicine, economics, business, social sciences, physical sciences, life sciences, and engineering. Like mathematics, it is an indispensable lool. It is a core science whose influence is spreadirg across all of society.

Computer Science is both a theoretical and an experimental science. In this it is similar to the physical sciences. Computer Science is also an indispensable tool in other disciplines. In this it is like the mathematical sciences.

RECOMAEADATABAS

Comporer Scicnce Departarnt Environoent

There are two step; which could significantly improve the environnent in Computer Science departments. The first is better facilities for teaching and research. This includes not only local facilities, but also network connections to other Computer Science research facilities. The second step is relief from large-class teaching loads in order to permit adequate time for supervising graduate students and for research.

The capital investment in facilities per researcher can be put in three ranges. (A researcher is a faculty member. a full-time PrD student, or a member of the support staff.) For the period 1981-85, the average department requires capital investment per researcher in the range $\$ 25 \mathrm{~K}$ to $\$ 30 \mathrm{~K}$. The department that wants its research to be at the frontier of Computer Science will require capital investment at a much higher level -- about $\$ 55 \mathrm{~K}$ to $\$ 75 \mathrm{~K}$ per researcher. The dspartment that chooses rot to emphasize the experimental side of Computer Science can get by with a capital investment of about $\$ 10 \mathrm{~K}$ to $\$ 15 \mathrm{~K}$ per researcher. (Appendix 1 illustrates these calculations.) In each case, about 20% of that capital investant must be added to the department's budget for maintenance and support. The total national cost to properly eapitalize lajegrantine dopartments - - at their current number of faculty and PhD students -- is estimated
 in the number of mal equatuts rajes tha razuired investment to about $\$ 90$:ailliun.

Pressures on faculty are intense. In the US, PhD Computer Seience racully have grown from 805 in 1975 to 825 in 1979 -- virtually no growth. The undergraduate student demand for Computer Science has risen at 15% to 20% annually during the same period.

Thus overburdened, faculty cannot find adequate time to conduct research or to supervise graduate students in research. This atmosphere is a strorg incentive for research oriented faculty to seek positions in industrial research groups. Departments must find ways to give faculty more tine for eaploring new ideas with their graduate students while continuing to fulfill teaching commitments. Limiting or cutting back enrollments would be counterproductive given the societal need manifested in the rising enrollments. The only way in the long term to meet this need is to train, hire, and retain new faculty.

Departments, universities, federal agencies, and corporations all haye roles in solving this problem. Departments must make hard choices within strained budgets to find more time to lessen the large-class teaching burden on faculty and to allow them to supervise graduate students properly. A encrial amazadation goes to the Mational Science foundation for inslituting the len Investigator

Fesearch Yroeram \downarrow asisiot in this purpose. The government ard corporationi can pruvial rimancial asisistance through fellowshigs, trainecship:, and proerans to build up experimental facilities.

Universitics musi comtribute a greater capital investment for experimental restarch, including adequate laboratory space as in other sciences, and must increase the size of the Computer Science faculty. In general, facilities and teaching positions must be allocated recognizing the inherent laboratory nature of the field, as they are in the physical sciences and in engineering.

Students

In 1980, 200 PhD computer scientists graduated from colleges and universities in the $U S$ and Canada; this number has declined steadily from 256 in 1975. More than 100 of this total were absorbed into industry and government, leaving fewer than 100 for academia. Studies conducted by the Computer Science Board and others have revealed that colleges and universities seek 650 PhD computer scientists to meet their present educational needs, and that industry and government seek an additional 650 PhD computer scientists. The supply is about 15% of the demand. Our inability to produce the needed PhDs threatens our ability to conduct basic researeh and to train all other computer specialists.

Increased prodaction of Pinlar is essential.

The Computer Seience Department heads aereed that the environment for educaling PliDs should be the same as the environment in which lhe faculty conduct their research; this environment should contain facilities comparable to those in high-quality industrial research labs. Such an environment would be a significant factor in attracting and retaining eraduate students and faculty alike. The facilities must have capacity sufficient to support all student research. The faculty must have time surficient to supervise the students properly.

An appropriate experimental environnent is not the only factor in attracting and retaining students; financial support is also important. There is a consensus that each PhD student should be supported by a combination of research and teaching funds at between one third and one half the starting salary of a new $B S$ degree holder. (This starting salary in 1980 averaged about $\$ 20,000$.$) Although a few department$ have stipends close to this, most need to make adjustments to reîlect reeent rises in salaries.

There is a consensus that the pool of Ph.D. students can only be enlarged through an increased number of fellowships and traineeships with stipends sufficient to reduce the attraction of immediate industrial employment among BS
 Bolh lisf and corporaticns can contribute to this goal.

There is also a consensus that, to increase the pool of identifiable $H^{\circ}{ }^{0}$ candidates, departments should increase their efforts to contact the best students in the undergraduate program. These students should be given special opportunities as research assistants to experience first hand the excitement of research.

Industry

The Computer Science Department heads noted that relations between industry and academia have improved during the past five years. They supported two proposals for further improvins the quality and quantity of industrial support for Computer Science.

The Computer Science Board will act as a research clearing house to make more information available to industry about sponsored research under way in Computer Science Departments.

Although there are many philanthropic grants to universities from major corporations, few of these have come to Computer Science. In search of new funds to support students and more research time for faculty, the Computer Science Board will send a letter to major corporations. This letter will set forth the special problems of Computer Science and argue thot it is in bhe best interests of these corporations to contribute to the solution. It will sugeest
 erosion" is reversud, siajs Lhe report, we will see the day when educators of computer profes:ionals will be forced to curtail enrollments. Although it ecnerally favors letting the marketplace remedy shorlages, the report specifically recommends Lovermment intervention to help the problems of the compuling profession. "We simply cannot afford to wait for the slow workings of the marketplace to correct these shortages," it says.

The $N S F-E D$ report independently corroborates the findings of the $C S$ Department Heads and implicitly supports their recommendations.

Low Level -- $\$ 10 \mathrm{~K}$ to $\$ 15 \mathrm{~K}$ per researcher. For example:

One 80 char. $x 24$ line B 8 D Display wi th modem \$1.0K
5% of a small menory midi computer (e.g., VAX) or suitable microcomputer based terminal
10.0K

Share of file server (1 megabyte) plus share of low-cost printer server
1.5 K

TOTAL $\$ 12.5 \mathrm{~K}$

Medium Level -- $\$ 25 \mathrm{~K}$ to $\$ 30 \mathrm{~K}$ per researcher. For example:
8.5% of a 4 -megabyte midi computer
\$20.0K
Medium-resolution frame-buffered B\&W terminals
2.0K

Share of local network and network interface for terminal
2.0K

Share of file server, low-cost printer server, and other miscellaneous common services3.0K

TOTAL \$27.OK

STATEME: IN SUPPORT OF FUNDING OF THE MO:TS PPOGPA: THROUGH THE UNIVERSITY SYSTE: APPROPRIATIO:

My name is Leland J. Walker, and I am a civil engineer and chairman of the Board of Northern Testing Laboratories, inc., , a firm of consulting y ?otechnical and construction materials engineers headquartered in Great Falls, with offices in Billings and in three other states.

I have been involved in the MONTS Program since its inception, having been one of the two non-educators appointed to the original ad-hoc committee by the National Science Foundation. This opportunity to be a part of the effort to Stimulate Competitive Research was particularly attractive to me against the background of more than ten years as a member of the Board of the Endowment and Research Foundation at Montana State University, and as a member of several advisory committees of the National Science Foundation.

Furthermore, I am completely convinced that a continuing strong research program is essential to the well-being of our country, the State of Montana, and to each of us individually. Nationally, we must develop the processes and products to improve our productivity, to expand our energy base, to deal with environmental concerns, and to learn more about alternative materials to take the place of those being depleted or of sources which might be foreclosed to us by political considerations. Research is important to the State, as is continually being demonstrated by the work of the Agricultural Experiment Station in adopting the results of basic research to development of new plant strains, and to development of new uses of agricultural products. I need go no farther than my own firm to illustrate the importance of research on the individual level. My profession is a dynamic one, in that we are constantly pushing back the frontiers of knowledge, experimenting with new ideas, materials and techniques, to better resolve the problems you bring to us.

As we worked to develop the MONTS proposal and program plan, a new spirit of cooperation and understanding among the units of the University System and the representatives of the non-academic sector emerged and flourished, and continues to this day. Some very good things happened in the process:

1) While our major emphasis continued to be to identify individual researchers and to assist them in preparation of competitive proposals, we discovered a renewed interest and positive attitude about research, on their part.
2) We found some institutional and other kinds of barriers to a healthy research environment, and were able to remove or mitigate them.
3) We early perceived that the program could be a catalyst for, and a means to:
a) involve students with intellectual and research promise;
b) involve nationally recognized science researchers in colloquia, seminars, and consultation--not only with the researchers, but with practicing scientists and engineers in the State;

c) purchase special items of scientific equipment--with multiple use potential;

d) develop communication mechanisms to disseminate the results of the research to the people of the State;
e) provide, through this integrated system, assurance to oppropriately trained persons that there will be continuing opportunities for them in the State, and there will be a mechanism, with the attendant resources, for their continuing professional growth and development to meet the challenges of change.

Strangely enough, all of us who worked on the program would have felt that our time and effort was worthwhile, in view of the new enthusiasm, attitudes, and statewide cooperation generated, even if we were not selected for a grant from NSF! But we were-- $\$ 2.4$ million over five years. That's, conservatively, 100 to 150 very clean one-year jobs!

I strongly urge you to act favorably upon this request for matching funds for the NSF grant--as you do so, you will be planting the seeds which will, in the future, bear the fruit of a more productive, efficient economy for the State of Montana. My own firm, Northern Testing Laboratories, has contributed $\$ 2100$ to the first year matching fund. Others have also contributed, so I am not asking something we have not done.

Thank you for this opportunity to present this statement.

ingirman: /hembias of hie Cormimilie.
Iiy name is Lonald habbe, i as Academic Vice Fresident at the University of fiontanh, I am here today speaking on behalf of the board of Regents Program Miodification fequest for, iibrary acquisitions
 of each of the six units of the university System and specifically
 Just as each of the six units within the System is unique \because
 libraries on the six campuses has particular and special functions.

These range from the lá=se researchioriented libraries on two impontant unhersify campuses to the more specialized but nonetheless actal instructionally related functions on the other campuses. While the size and function of our libraries vary the adequacy of the
 Cemitril to the acadeitic core of each of the six institutions, beit for students, for faculty, and indeed for the health of each of the academic programs. You have heard much in the last several days about new developments in education: the need for more computers and student access to them, outreach programs, off-campus programs, clinically oriented programs. You will heffy soon about the important development if: Librafy networking. As significant as all of these developments are, none really replace the need for a solid core collection

 Lemphilig a souid crilection Eor eagh of our libraries.
 WHO E. ! FAVORABLE RESPONSE TO THIS REQUEST AS VELL AS THE NETWORKIV: res.
PRODOSAL AND EUNDINE O THE FORHULA YOULD BE A. VERY VAJOR STED TO:AAR

T2 in romeroricec.
The library at liesteri: "ontario college needs ail importal:-
INFUSION: $O=$ FUNDS TO REF THE COLLECTION, TO THE MINIMUm: STANDARDS SUEEESTED BY THE GHERICAN: LIBRA R f.SSOCIATIOI: HORTHERA OONTAHO. COLLEEE HAS A. NE: LIBRAS: STRUCTURE BUT FINDS THAT, COLLECTION DEFICIENT IN; NUMBER OF RESPECTS, MONTANA TECH, WHILE EXPERIENCING A BURGEONING ENROLLMENT IN ENGINEERING, FINDS STATE RESOURCES INSUFFICIENT TC MAINTAIN CURRENT SUBSCRIPTIONS TC SCIENTIFIC JOURNALS, EASTERN OONTAIÍn COLLEGE HAS BASIC COLLECTION DEFICIENCIES IN TERMS OF ITS AUTHORIZE A progerais in business, huliar: services, education, and liberal arts. MONTANA STATE UNIVERSITY HAS EXPERIENCED A ESE INCREASE IN INTERLIBRAFY

 Wholiomes for pore incur the

的
 Institutional budgets and as the interim Finance Committee formula rundle Study shows, fiontanf. has an historic pattern of underfunding lone term II: THIS AREA. THE CUMULATIVE EFFECT OF THIS UNDERFUNDING FOR OUT: LIBRARIES RESULTS IN BASIC COLLECTION DEFICIENCY THESE DEFICIENCIES have been exacerbated by the rapid escalation of periodical $\overline{\text { mire }}$

ACERBATED BY THE RAPID ESCALATION OF PERIODICAL
COSTS. THOSE COSTS EAT UP AN INCREASING SHARE OF ACQUISITION BUDGET UNTIL IT ALMOST LITERALLY BECOMES IMPOSSIBLE TO BUY AMY BOOKS OR MONOGRAPHS AT ALL.
he are aware that the proposed LFA budget will permit substantial INCREASES IN THE ACADEMIC SUPPORT CATEGORY, THIS WILL HAVE A CLEAR BENEFIT FOR LIBRARIES AND EACH OF THE UNITS HAS Propose MAJOR INCREASES FOR LIBRARY ACQUISITIONS FOR THE NEXT BIENNIUM and applause.
WE RECOGNIZE $\lambda^{T H I S}$ Important ADVANCE BUT AT THE SAME TIME
 OF the past, ThOSE LONG years of neglect have taken their toll and that is the problem the Regents request for acquisitions attempts To ADDRESS. - Jim med el to male retroprectwi pourctuacs to bring u-ax́cemois clios es to a otantand of banc sibececam:

In the last month or so, this comhittee has heari each of the Institutional presidents descride the mainner in which they have beel. FORCED TO BALANCE THEIR BUDGETS AGAINST THE! REAL ${ }^{\circ}$ ACADEMIC PRIORITIES ARD interests, his one comilttee member pit, you have been robbing Peter to pay Paul," Unfortunately, libraries have too often playez the role of Peter in this prees:


```
Fegruary if, 198!
iotes Dy Elizabeth 'lorris: =:..
```


Abstract

We live in an information socied. To keep up with the rest of two. E_{o}. and the world, 'ontana neers to know what needs to be rnin. le find at Montana Tecn tnet aEopie 戶re owaing from around our staze oo look at our specialized redorts on minino, petroleum exploration ara operations, and geology, alternative eneray production, macninery to use in their projects, and also the looking up of works in social sciences and arts areas. '.'e send books out to libraries around the state.

The library consists of books, macazines, zasic research papers which are reached througn our many indexes and abstracting publications. for example, APPLIED SCIENCE AND TECHNOLOGY INDEX, ENGINEERING IHDEX, PETROLEUM ABSTRACTS, $\because E T A L S ~ A B S T R A C T S, ~ A I R ~ P O L L U T I O N ~ A B S T R A C T S, ~ E N E R G Y ~$ ABSTRACTS, SCIENCE CITATION INDEX, BIBLIOGRAPHY AND INDEX OF GEOLOGY, BIOLOGY ABSTRACTS, ETC. These indexes are extremely expensive to buy and to collect, but with their presence, it is possible for Montana Tech to act as a branch of the world university, an enormous information system : :hich qives the most up-to-date possible information about new techniques, no: fizas. ing ne:d research desions and subjects.
 avaiiable in our state. Fontana iecn, ontana state and the -nlvers. ty as well as the State Library offer subject searches of a more extensive group of subjects via computer than our indexes and abstracts can offer. This will become more and more the operating system in a short time to come. These searches at present cost from $\$ 15.00$ to about $\$ 50.00$ depending upon the complexity and the cost of the data base. Cost ratios will be :watcned to determine the point at :nion the indexes can be discontinued in fayor of on-iine searcnes in rany libraries.

Purchasing poiicies in the ecademic community is at present closely tied OO the teaching procras. aying is also in iluenced by changes in technology, new subjects on the norizon, being introduced into course aterial and the requests for interlibrary loans from our users, woul academic and Fontana cizizens. Faculty do most of the selecting and Wis is subject to negotiation since in some years some areas are publishing much more heavily and some efforts must be made to respond to important subject areas :where change takes place, and limited budgets are restricting that area unduly.

Soecial collections in iontana exist in all libraries, academic and public. .ie know of many of them, and we are working toward more cooveration so that we can know eacn otners, furchasing policies and avoid duplicacion. It is well known that ine University at Bozeman buys in depth in wildife study; Montana Tecn's old and valuable map collection is the reason for many visits to our campus from Billings, Great Falls, Glasgow, etc.

It is especiaily important that these strengtns be more known and recognized by wider users. It is important that the state libraries attempt to fili gaps in Montana noldings for wion we must go out of state to borro: frequenti. I believe we have the capability of considerabie cooperȧion in working with both academic and- public libraries to go furtner in tris direction. Most dublic libraries have speciaitities as weil as our academic liorary collections. Automation is one imoortant route wich can speed up this process and make it possible to avoid using the "meetinas" and :"conference calls" way of exploring this kind of information.

A number of liorary automation systems exist now. both subsidized and commercial. These nearly ali allou: the cataloging of collections. With on-Tine terminai:. i: is cossibif for reaional libraries to discover what has deen added to eacn otners collections, to use the cataloging done for their oun books when dunlication is appropriate, and to borrow where they do not wisn to soend the money on a seldom used title. In addition, some of the systems now have, all will have, library loan functions which allow for auick verification and processing of loans, but unfortunately not yet auick delivery of the books which still come by U.S. mail. Some of the systems also -have an accounting! ordering system which keeps track of bookkeeping and release clerical help to the public assistance desk. The tremendous advantages of these systems lies in the extension of Montana's awareness of the

 as well as meny German, French and otner continental works.

The Board of Regents instructed the Commissioner of Higner Education to consolidate the various campus requests for additional library funding into one system-wide request for presentation to the legisiature and set the amomt of the request at $\$ 1.4$ million. The Board of Regents instructed the staff to recognize two pariicular problems: (1) relative library deficiencies and (2) Board of Regents' approval of new programs.

The Conmissioner of Higher Education developed information based upon an appreciation of the guidelines of the American Library Association to attempt to measure relative deficiency at each of the libraries of the campuses of the Montana University System. Based upon average current book costs, those guidelines suggest a deficiency of close to 1 million volumes. Utilizing the most recent average book cost data, the value of the deficiency ranges upward to $\$ 22$ million dollars.

After the original allocation of this amount to individual campuses was proposed in September, some of the data were refined and the Commissioner and the Council of Presidents discussed possible allocation methods several times.

The Comissioner's current recomendation is to allocate the total funds based upon a uniform base amount to each unit and an amount to recognize deficiencies and new program authorizations.

The uniform amount is intended to (1) recognize that the counting of the holdings is not on a completely uniform basis at this time, thus creating some problems in deiermining relative deficiencies and (2) reflect different needs of the units for library materials, i.e., some needed to purchase maps, some need to move closer to the basic volume criterion of 85,000 , others need more costly technicel wonks, etc.

The second apportionment is based upon a recognition of relative deficiencies as best they can be determined currentiy as well as upon total program authorizations.

The allocation recomended by the Commissioner of Higher Education is:

Uniform

Campus Base Allocation
University of liontana $\$ 100,000$
Montana State University 100,000
Pontena Tech
Eastem Irontana Coilege
Northerm Montana College Western Montana College

TOTAL

100,000
100,000
100,000 100,000
$\$ 600,000$

Relative
Deficiency
\$168,000
416,000 88,000 40,000 40,000 48,000
$\$ 800,000$
$\$ 1,400,000$

$$
\left\lvert\, \begin{array}{lll}
n & N & \tilde{0} \\
0 & n & 0 \\
0 & 0 & 0 \\
& 0 & 0 \\
0 & n & n \\
n & n & n
\end{array}\right.
$$

MSU
85,000
711
71,100
9,811
147,165
45
15,750
24.5
147,000
16
48,000
16
400,000
914,015
405,459
508,556
555.6

UM

11

33,000 | \sim | 8 | 0 | 0 |
| :---: | :---: | :---: | :---: |
| Γ | 8 | n | 0 |
| 0 | n | | |
| 0 | N | 0 | |
| | 0 | 0 | |
| \sim | ∞ | 0 | |

N
On
in
N
N
*Includes FTE faculty in experiment stations and professional in the Bureau of the Mines, provision for MPA at 2 universities, MBA at EMC and WAMI at MSU.

[^0]
Priority \#3

Participation in Washingtonf Library Network FY 1981-82 FY 1982-83 Total
$\$ 221,837 \quad \$ 146,458 \quad \$ 368,295$
Objectives: Increase information availability to Nontana students, faculty, researchers and citizens through a cooperative library network.

Description: Shared use of a very large data base of library holdings; computerized assistance in cataloging, library ordering and interlibrary loans.

Justification: Participation in the Washington Library Network will make the library resources of the participating units more widely available and, through interconection with libraries in the Pacific Northwest and the Library of Congress, make library resources outside the state more readily available.

The Washington Library Network has invested several million dollars over a 10year period to develop the network which is considered one of the better computerized library networks. Because of its location in the region, it is more readily accessible.

In this context, "netwonk" refers to a group of libraries linked to a computerized set of catalczing data files and data manipulation systems that support local technical and public services, as well as the cooperative programs of the group. Such a network represents the best response to date to the need for more effective means of resource sharing, on the part of librarians and information scientists. Regional netrons have proved more viable than a single national network. Rapid progress is being mace toward complete interface among existing regional entities, to link up a ravional system. The use of centralized cataloging to provide a machinereadable recond compatible in all data bases will enable member libraries to exchange data and share resources more freely and rapidly.

Over a period oi ten years, and at a cost of five million dollars, the Washington State Library has developed the Washington Library Network. Its features and services parallel, and in some instances exceed, those of other networks. It now has 62 member libraries, and its software is in use in British Columbia, Australia, and in the Southeastern Library Network. Plans are underway for the assumption by WN of some functions of the Pacific Northwest Bibliographic Center. The latter is an interliorary loan switching center, which has been functioning for forty years, is owned curmently by the state library agencies of Washington, Oregon, Idaho and Montana, and also serves libraries in three Canadian provinces. In Montana most of the University System libraries, the major public libraries, and the State Library, for over thirty years, have been contributing records of their holdings to the PNBC card catalog, which now represents over four million titles held by libraries in the Northwest region. The imminent entry of this PNBC catalog into the WLN data base effectively would enter the retrospective holdings of the six campus libraries into that network without additional cost to them.

Because of their Iong interaction with other librarses in the Northwest, and the participation in PNBC as the forerunner of WLN, libraries in Montana have felt that their membership in WLN would be a logical and practical development. They have sought means of participation through direct state funding, through the use of Federal funds, through grants, etc. So far, they have been successful only in having the Billings Public Library join the network through a Coal Board Grant. Membership of principal libraries in the state would enhance the sharing of resources among all Montana libraries through interlibrary loans, since the network data base would serve as a union catalog for the state, providing microfiche catalogs of all Montana holdings for those smaller libraries not on-line with the network. Also, access to resources throughout the region and beyond would be increased greatly. The role of the university system libraries as the major back-up for interlibrary loan within the state would be facilitated.
FY 1982 FY 1983 Biennium

Montana State University

Personal Services
Operations
Capital
TOTAL
Univeristy of liontana
Personal Services
Operations
Capital
TOTAL
Montana College of ivineral
Science \& Tecinolozy
Personal Services
Operations
Capital
TOTAL
Eastern Montana College
Personal Services
Operations
Capital
TOTAL
Westerm Montana College
Personal Services
Operations
Capital
TOTAL
\$ 0
36,970
15,790
$\$ 52,760$

0
$\$ 31,090$
27,560
$\$ 58,650$

$$
\begin{array}{rrr}
\$ & 0 & \$ \\
34,200 & 0 \\
0 & 65,290 \\
\$ 34,200 & \$ 92,560 \\
\hline 92,850
\end{array}
$$

$\$$	0	$\$$	0
13,717	14,600	$\$ 28,317$	
12,000	1,000	13,000	
$\$ 25,717$	$\$ 15,600$	$\$ 41,317$	

\$ 0

$$
17,527
$$

\$ 0

$$
\begin{aligned}
& 10,854 \\
& \hline
\end{aligned}
$$

$$
19,280
$$

$$
\$ 28,381
$$

$$
\begin{array}{r}
\$ \\
36,807 \\
10,854 \\
\$ 47,661
\end{array}
$$

$$
\$ 19,280 \quad \$ \frac{10,674}{47,661}
$$

$\$ r 0$	$\$$	0
14,727	15,540	0
10,354	0	0
$\$ 24,981$	$\$ 15,540$	$\$ 40,521$

Northerm Montana College

Personal Services	\bullet	$\$$	0	$\$$	0
Operations	19,244	21,168	40,412		
Capital		0	0	12,104	
\quad TOTAL		12,104		0	$\$ 31,348$
		$\$ 21,168$	$\$ 52,516$		

TOTAL

Personal Services
Operations
Capital
TOTAL
\$ 0
132,675
89,162
$\$ 221,837$
\$ 0
\$ 0
145,458
278,133
1,000
$\$ 145,458$$\quad \frac{90,162}{\$ 368,295}$
 of WLN use at Farmiy Billire Library, Elilince. Erefarea by Eller. Newber, Heaz, Technical Eervices. Fermary I, 190.

WLN is a powerful tool for research and all the library furctions that suppert it such as book and journal purchasing, indexing, reference, and interliorary ioan. Its softwafe, developed by Boeing at a cost of four million dollars and forty man years, is widely acknowledged to be the finest in the field, and as part of the Pacific Northwest library region, Montana is fortunate to be in "WLN country." At present, there are sixty-six members, of which over half are academic libraries. Boise State, Eastern Washington University, Evergreen, Gonzaga, Portland State, Washington State University, University of Alaska, University of Idaho, and University of Washington are a few of the participating academic libraries. Its data base consists of nearly two million books, the majority of which have been published since 1968, and tells where copies of them are located in the Northwest (see over).

WHAT IT OFFERS THE UNIVERSITY SYSTEM

BOOK BUYING SUPPORT: Offers ordering, fund accounting, claiming, and cancellation services. Makes cooperative purchasing a possibility, not just something discussed in meetings. This would be especially useful and important if a special appropriation is made for the purchase of books.
SHARED INDEXING: Would eliminate current widespread duplication of effort. Four hundred state documents are published each year. The State Library indexes and distributes them to the University System Iibraries who also index ther (400 documents $x 6$ libraries $=2,400$ units of work). With WLN, ONE LIBRARY indexes the book according to highest standards and the work is used by everyone else (400 documents x l library $=400$ units of work). This same duplication of effort can be eliminated for many locally published Montana books and journals.
REFERENCE: Its searching capability compares to the card catalog in roughly the same way a Model T compares to an airliner. Coupled with a fast printer, WLN can enable a student or professor to do research in minutes or hours that would have taken days or weeks to do previously. For Montana's students and professors to stay competitive, they need this sort of tool. Makes many more books available when library users can see what each unit has, not to mention what is available throughout the Northwest.
INTERLIBRARY LOAN: Requesting a book via Interlibrary Loan used to be a little iike putting a note for help in a bottle and tossing it into a river. Four to eight weeks was considered good turnaround time because first you had to find by random guessing which library had the book. WLN tells you in seconds (please see over). In a study conducted in Billings last fall using WLN to pinpoint locations of books requested, 54.18 percent of the books arrived in two weeks, and 75.18 per cent arrived in three weeks. Use of WLN will also reduce current use of PNBC , an interlibrary loan book-locating center. At present, Montana fays PNBC $\$ 5.00$ per book ($\$ 70,000.00$ per year) to locate books for its library users. Thirty per cent of the time, PNBC charges the $\$ 5.00$ to tell Montanans that the books are located in Montana, often in one of the Universities. For an average search cost of seven to twenty-one cents, the University System Libraries can cut out this costly middle man for the majority of books published since 1968 . PNBC would still need to be used for older, rare, and extremely technical publications that are out-of-print or that the University System Libraries would not want to buy.

If "CARD CATALOG INFORMATION" whicn can de useá Dy all libraries to index their copies of the boor.

-

∞

BIbLIOGRAPHIC DISPLAY
Doig, Ivan.
This house of sky : landscapes of a Western mind / Ivan Doig. 1st New York : Harcourt Brace Jovanovich, cl978.
$314 \mathrm{p} . ; 25 \mathrm{~cm}$.
ISBN 015190054X: \$9.95

1. Doig, Ivan. 2. Doig family. 3. Meagher Co., Mont. graphy. I. Title.

F737.M4 D543 $978.6 / 6121030924 \mathrm{~B}$

All these libraries (thirty in all) own copies of the book...

B-DOIG DIIG WaSp WaRety-R WaKeM Wawen WaSpCo Wal Wav WaBr
$\mathrm{B}=\mathrm{D} 2 \mathrm{LG}$ D $\operatorname{IO} \mathrm{GQMONTANA}$ MtBil
F 737 M4 D643 WaU
NW B-DOIG DOIG Wa WaTPC WBB WaBB WaOE IdU WaFW WaU iection......
NW B-978 DOIG WaMaS
Nw F737.M4D643 Waww
NW 978.0612 DOIG WaRi
SpC F737 M4D643 WaChenE
W-AUTH DNIG Wa
818.5 WaSKC

921 DOIG Id
978.0612 DOIG WaE

Call numbers used by
the various libraries.
broard of legrnis Qudact moolification
name_Ellen Newberg BILL No. for funds for ADDRESS 925 Burling ton Ave. ${ }^{\circ}$ DATE \qquad sycter whom do you represent Parmly Billings Library SUPPORT \qquad OPPOSE \qquad AMEND \qquad please leave prepared statement with secretary.

Comments:
As a participant in this liluary automated netuark for facestum monthe, O enthusiasticolly sceppart the Uneriescity Lysteme bid to join it. Their participation wauld:

1. aclow caaperative bueging
2. "' Gadk sharkigg
3. reduce workloads
4. make rescarch easien and footer as it recates to hosks

STATISTICS FOR FISCAL YEAR 1980 SHOWING USE OF UNIVERSITY SYSTEM LIBRARIES BY PUBLIC-LIBRARY USERS, STATE GOVERNMENT AGENCIES, HEALTH SCIENCE (HOSPITALS AND CLINICS) PR OFESSIONALS, AND PRIVATE COMPANIES (I)
I. Lending to public library users within the federation areas - FY80 (2):
A. 13% of all interlibrary loan (ILL) requests by public library users in the Broad Valleys federation (Bozeman Public Library, headquarters, 12 counties in southwestern Montana) were filled from the collection of the Montana State University Library.

In FY80 there were 15,191 requests for books and magazine articles by library users of the Broad Valleys Federation. 1,983 of these were filled by the MSU Library . oo
B. 11% of all interlibrary loan requests by public library users in the Tamarack federation (Missoula City-County Library, headquarters, 7 counties in northwest Montana) were filled from the collection of the University of Montana Library.

In FY80 there were 9,359 requests for books and magazine articles by library users of the Tamarack Federation. 1,019 of these were filled by the UM Library.
II. Use of UM, MSU, and Montana Tech libraries by the Pacific Northwest Bibliographic Center (PNBC) for referrals of interlibrary loan requests - FY80 (3):
A. In FY80 Montana libraries statewide made 15,420 requests of the PNBC in order to determine the locations of books and magazine articles for the purpase of borrowing them. 1. 5,296 , or 34%, of these were located in Montana libraries and were referred back to them to be lent to the requesting libraries.
2. 3,214 of the requests referred to Montana libraries, or 61%, were filled by the libraries of UM, MSU, and Tech. This is 2% of the total number of requests referred to PNBC. 3. The circle represents the total number of ILL requests sent to PNBC in FY80-15,420.

\square The white area represents Montana's interlibrary loan requests filled out -of state - 10, 124, or 66% of those referred to PNBC.
[国是 The total shaded area represents the number filled by Montana libraries - 5,296 or 34% of those referred to $P N B C$.
T The shaded/striped area represents the number of Montana libraries' requests referred to PNBC which were filled by UM, MSU, and Tech libraries - 3,214 or 21% of the total.
III. Books and magazines borrowed from MSU, Tech, and UM libraries by requestors outside the immediate academic community, ie state government agencies, public library patrons, health science professionals, and private organizations (4):
A. MSU Library - books and magazine articles:

1. Total number of ILL requests lent to other libraries, in- \& out-of-state- 8 ; 978

2. Total in-state requests lent to state govermment agencies, public

3. Total in-state requests lent to other Montana universities and colleges and private organizations 712 or 9%

B. Montana Tech Library - books and magazine articles

C. University of Montana Library

1. Total number of books and magazine articles lent, in- \& out-of-state-- 5,035

a. No. of photocopies provided for state government agencies, public library users and health science professionals -............-- 1,085 or 61%
b. No. of photocopies provided for other academic libs. etc. --...-- 709 or 39%
2. Total no. of books lent to other libraries, in- and out-of-state--..-- 3,240
a. No. Ient out of-state ---.. 124 or 35%

1) Statistics show usage of UM, MSU and Tech libraries, the libraries for which statistics are available and which do the majority of the lending to non-academic community requestors.
2) Statistics are provided by the federation headquarters and compiled by the State Library.
3) Siotistics are compiled by PNBC. 14) Statistics are compiled by the ILL Depts. of

PLEASE LEAVE PREPARED STATEMENT WITH SECRETARY.

Comments:

Offer an MBA in Billings

The Role and Scope document adopted by the Regents charges the University 0 of Montana to ". . . move to develop an MBA or combined MBA/MPA program in Billings, coordinating with and using resources from Eastern Hontana College and Montana State University as appropriate." The degree would be conferred only by the University of Montana." There is evidence of a strong demand in Billings for such a program. In order to serve the demand and meet the responsibility under the Role and Scope document the program should be started as soon as possible. However, it can not be started without additional funding.

Accreditation requirements place certain constraints on such a program in order to assure maintenance of quality. Only a minor proportion (25% or less) of the faculty can be part-time. Seventy-five percent must have doctorates in the appropriate disciplines. Teaching load is limited to nine units per quarter. The library and other resources must be adequate to support a graduate level program.

Experience with the MBA program at Malastrom Air Force Base indicates that a minimua of 5.0 FTE faculty are needed to cover the disciplines. This numbe: is independent of enrollment at lower levels of enroliment.

None of the institutions has the extra resources to start the prorram. Under formia Eunding the allocation of resources is based on programs already in place. In adition, eracuate programs are generally low student-facilly ratio prograns. The MBA on campus runs approximately 14.6:1 and $E=$ Vainstrom 10:1. To conform to an assigned overail student faculty ratio of $24.5: 1$ the School of Business Administration at U of M must run a very high undergraduate ratio to compensate. Currently that ratio is perilcusly close to naximum allowable 26.6:1 set by accradization standards. The School can not "carry" another low ratio progra: by running up the undergraduate ratio.

Finally, the tiaing of funding further complicates the issue and makes the costs involved more onerous. If the MBA were to be started in Billings in 1981-S2, it would be 1983-84 before even inadequate funding would be generated and appropriared. Consequently, program modification dollars would be necessary to carry the program until the next bienaium can bring even partial recovery of the costs.

The budget subritted below envisions 2.0 FTE faculty the first year and an additional 2.0 FTE the second year. One FTE of those employed the first year will also serve as resident administrator of the program. These faculty should provide coverage of the necessary disciplines during the first two vears. An additional faculty member will be necessary in the third year. The secretarial position is necessary to provide secretarial help for the resident administrator and to comanicate with and provide help to faculty coming from L of M , MSU and Eastern.

Student help will be necessary to aid the faculty. This is particularly important because of geographic dispersion of the faculty. The major two components of operating expense are communications and travel. These will be higher than normal because of the geographic dispersion of the faculty. Computer charges and rent are listed separately because they will be payments to EMC. Capital is primarily the cost of bringing the EMC library to graduate level in the business disciplines. Also in the first year there are funds to equip the offices of the Resident Administrator and secretary and an office for use by visiting faculty.

Proposed Budget Requiring
Program Modification Funding*

	FY 1982	FY 1983	Total
Personal Services			
Faculty	\$ 58,560	\$112,954	\$171,514
Fringe	9,956	19,203	29,159
Secretarial	9,800	10,530	20,330
Fringe	1,666	1,790	3,456
Temporary \& Part-time help	1,500	2,000	3,500
SUbTOTAL	81,482	146,477	227,959
Operating expense	7,500	5,100	12,600
Computer Cinarges	6,000	7,000	13,000
Space Rental	1,815	2,420	4,235
Subiotal	15,315	14,520	29,835
Equipaent	4,442	1,043	5,485
Librar:	66,326	7,500	73,826
SUBTOTAL	70,768	8,543	79,311
TOTAL	\$167,565	\$169,540	\$337,105

*A tentative distribution among units (UM, EMC, MSU) is attached on the next page.
Distribution of Proposal Budget Requiring
Program Modification Funding
ibution of Proposal Budget Requiring
Program Modification Funding
\vec{n}
O.
g \approx

$$
\text { FY } 1983
$$

Total (Biennium)

85,947	30,265	30,265	132,171	47,894	47,8
3,300	900	900	6,600	1,600	4,4
	7,000			13,000	
	2,420			4,235	
\ddots	1,043			5,485	
	7,500			73,826	

FY 1982			FY 1983			
IMM	EMC	MSU	UM	EMC	MSU	UM
\$29,280	\$14,640	\$14,640	\$62,074	\$25,440	\$25,440	\$ 91,354
4,978	2,489	2,489	10,553	4,325	4,325	15,531
9,800			10,530			20,330
1,666			1,790			3,456
500	500	500	1,000	500	500	1,500
46,224	17,629	17,629	85,947	30,265	30,265	132,171
3,300	700	3,500	3,300	900	900	6,600
	6,000			7,000		
	1,815			2,420		
	4,442			1,043		
	66,326			7,500		
\$49,524	\$797-883	\$21,129	\$89,247	\$78;863 $\$ 49,12.8$	\$31,165	\$138,771

SUBJECT: Allocation of Repair and Maintenance Funds

The attached schedule provides the suggested allocation of the repair and maintenance funds as recommended in the analyst's budget.

While we reviewed several different approaches and analyzed the formula distribution models that are used in other states, we decided to use a distribution model based on gross square footage and age of the various buildings. Our method of distribution did not take into account external building space such as acres of lawn, miles of roads, sidewalks, parking lots, etc. Our present data base does not permit adaption to any of the more sophisticated physical plant formula methods.

We have discussed the proposed allocation with the campuses and there is a consensus that the proposed allocation provides as equitable a method as our current data base permits.

The method used takes into consideration the gross square footage and age of the facilities supported by current unrestricted state funds. We excluded garages, storage facilities, greenhouses, livestock, sheds, barns, etc. The amount allocated to each campus is supported by a schedule listing the facility related square feet and the age of each building.

MONTANA UIIVERSITY SYSTEN

Proposed Allocation of Repair and Maintenance Funds
1983 Biennium:

- Building Name	Gross Square Feet	$\begin{gathered} \text { Year } \\ \text { Built } \\ \hline \end{gathered}$	Age	Age x Square Feet
Montana Hall	39,725	1896	85	3,376,625
Traphagen Hall	37,014	1920	61	2,257,854
Lewis Hall	42,131	1923	58	2,443,598
- Linfield Hall	65,563	1909	72	4,720,536
Romney Gym	53,074	1922	59	3,131,366
- Ryon Lab	56,331	1922	59	3,323,529
Roberts Hall	49,395	1922	59	2,914,305
- Herrick Hall	40,387	1926	55	2,221,285
Home Management House	2,894	1933	48	138,912
- Renne Library	152,085	1949	32	4,866,720
McCall Hall	10,488	1952	29	304,152
A.J.M. Johnson Hall (Physics)	41,333	1954	27	1,115,991
Fieldhouse	131,056	1958	23	3,014,288
Reid Hall	91,167	1959	22	2,005,674
- Marsh Veterinary Lab	29,426	1961	20	588,520
aines Hall	79,563	1961	20	1,591,260
-ooley Lab	30,604	1960	21	642,684
Cobleigh Hall	92,741	1970	11	1,020,151
- Leon H. Johnson Ha??	112,011	1973	8	896,088
Museum of the Rockies	31,200	1973	8	249,600
- Sherrick Hall	18,298	1973	8	146,384
Health \& P. E. Building	80,325	1973	8	642,600
Reno H. Sales Stadium	45,242	1973	8	361,936
Stadium Lockers \& Rest Room Building	3,614	1973	8	28,912
Howard Hall - Music	29,102	1974	7	203,714
- Cheever Hall - Arch. \& Ind. Arts	63,806	1974	7	446,642
Haynes Hall - Art	42,104	1974	7	294,728
- Wilson Hall	84,708	1974	7	592,956
USDA Entamology Lab	4,320	1924	57	246,240
- Military Science	19,994	1947	34	679,796
Hamilton Hall	27,745	1910	71	1,969,895
Heating Plant.	7,814	1923	58	453,212
(aint Shop	1,920	1947	34	65,280
Danforth Chapel	2,299	1952	29	66,671
- Service Shop \& Physical Plant Building	g 12,590	1952	29	365,110

Building Name	Gross \# Square Feet	Year Built	Age	Age x Square Feet
University Hall	35,224	1891	83	2,923,592
lenture Center	23,187	1898	83	1,924,521
Mathematics	17,894	1903	78	1,395,732
'sychology	17,133	1908	73	1,250,709
- Natural Science	23,100	1918	63	1,455,300
Social Science Bldg.	78,625	1921	60	4,717,500
-orestry	23,732	1921	60	1,423,920
Mens Gym	45,291	1921	60	2,717,460
leating Plant	7,756	1921	60	465,360
Fine Arts	63,756	1935	46	2,932,776
Journalism	29,410	1936	45	1,323,450
Alumni Center	6,501	1937	44	286,044
(harmacy	47,833	1938	43	2,056,819
Itural Science Addn.	4,956	1938	43	213,108
Business Administration	27,938	1950	31	866,078
- Music	41,010	1953	28	1,148,280
Fiel dhouse	169,449	1953	28	4,744,572
_-iberal Arts	101,769	1953	28	2,849,532
Womens Center	57,185	1953	28	1,601,180
dealth Service	34,770	1955	26	904,020
Art Annex	15,086	1955	26	392,236
'ool	22,630	1958	23	520,490
\#ealth Science	61,230	1961	20	1,224,600
-aw	52,280	1961	20	1,045,600
Physical Plant	50,608	1967	14	708,512
Science Complex	99,051	1971	10	990,510
- ibrary	221,731	1973	8	1,773,848
Heat Plant Shop	2,100	1962	19	39,900
-odge (54\%)	45,496	1954	27	1,228,392
3iological/Elrod Labs	17,236	1950	31	534,316
* touses used as Offices	46,071	N / A	1	46,071
Special Observatories	577	1972	9	5,193
TOTALS	1,490,615			45,709,621

EASTERN MONTANA COLLEGE
Building Inventory

Building
McMillan Hall
micience
Science Addition
-isel
Education
Yusic
P. E. Building
P. E. Addition

Zibrary/Classroom
Liberal Arts
-Special Education
© ${ }^{\text {ret Annex }}$
Dhysical Plant/Office
Mouses used as offices
TOTALS

Gross \# Square Footage	$\begin{aligned} & \text { Year } \\ & \text { Built } \end{aligned}$	Age	*ge x Square Footage
53,338	1935	46	\$2,453,548
33,907	1947	34	1,152,838
15,000	1978	3	45,000
25,288	1951	30	758,640
28,751	1953	28	805,028
10,601	1955	26	275,626
84,760	1961	20	1,695,200
28,237	1981	1	28,237
80,735	1968	13	1,049,555
97,488	1969	12	1,169,856
43,765	1972	9	393,885
6,152	1978	3	18,456
20,099	1979	2	40,198
11,248	N/A	1	11,248
539,369			9,897,315

NORTHERN MONTANA COLLEGE

- Building Inventory

Building Name	Gross \# Square Feet	Year Built	Age	Age x Square Feet
Pershing	15,340	1933	48	736,320
Metals Tech	11,293	1944	37	417,841
Auto Mechanics	14,480	1952	29	419,920
Body Shop	3,680	1952	29	106,720
Cowan Hall	64,968	1953	28	1,819,104
Armory Gym	57,193	1957	24	1,372,632
- Physical Plant	6,414	1967	14	89,796
Math Science	41,861	1968	13	544,193
- Elec. Tech	14,590	1968	13	189,670
Cngineering Tech	54,378	1971	10	543,780
Davey Addition - Auto Mechanics	7,708	1979	2	15,416
-Library	33,593	1981	1	33,593
- TOTAL	325,498			6,288,985

MONTANA TECH
 Building Inventory

- Building Name	Gross \# Square Feet	Year Built	Age	$\begin{gathered} \text { Age } x \\ \text { Square Feet } \\ \hline \end{gathered}$
Main Hall	37,000	1896	85	3,145,000
- Mill Building	17,456	1908	73	1,274,288
Engineering Building	12,880	1923	58	747,040
- Metallurgy Building	31,700	1923	58	1,838,600
Gym	23,600	1925	56	1,321,600
- Library/Museum	32,552	1940	41	1,334,632
Physics/Petroleum	18,363	1953	28	514,164
- Hper	58,162	1979	2	116,324
Mining/Geology	48,930	1976	5	244,650
Library/Auditorium	39,240	1978	3	117,720
Physical Plant	8,820	1968	13	114,660
- TOTAL	328,703	-		10,768,678

WESTERN MONTANA COLLEGE

Building Inventory

Building Name	∞			
	Gross \# Square Feet	Year Built	Age	Age x Square Feet
01d Main	46,799	1897	84	3,931,116
01d Library	17,986	1924	57	1,025,202
Gym	34,294	1924	57	1,954,758
Heating Plant	4,543	1926	55	249,865
Aud. Shop	13,811	1952	29	400,519
P. E. Complex	72,792	1969	12	873,504
Library/Administration	37,768	1969	12	453,216
Office/Classroom	42,466	1971	10	424,660
House used as Offices	10,600	N/A	1	10,600
TOTAL	281,059			9,323,440

1. (a) Grants and contracts have both direct and indirect costs. Direct costs are those that can be identified as solely benefiting a single project such as salaries, supplies, communications, and equipment. Indirect costs are those costs incurred by the institution to benefit a number of projects but that cannot be identified solely with and charged to a single project.
(b) Examples: Telephone: Long distance calls can be identified with a single project and are therefore direct costs, while local calls and instrument (service) charges cannot, and are therefore indirect costs. Secretarial services: When a secretary is hired for the purpose of providing service to a single project, the cost is a direct one; when the project does not require the hiring of a secretary but does require some secretarial service as administrative support, that service is a indirect cost. Recruiting Ads: These are paid by the University and reimbursed as indirect costs.
(c) The sponsor reimburses the University for funds spent on indirect cost items at a rate determined by the government.
2. Using Indirect Cost Reimbursments as revenue is inappropriate for a system on an enrollment-driven budget.
3. No other state in the region appropriates more than 60 percent of indirect costs.
4. Indirect Costs Recovered should be used to pay for grant and contract related expenses.

LEGISLATIVE TREATMENT OF INDIRECT COSTS

Budgeting of Higher Education in Montana is essentially enrollment driven. The budgets of the various units of the university system, like most publicly supported universities, are in large part determined by the number of enrolled full-time equivalent students. When a university undertakes research or educational service agreements, resources that were originally appropriated on the basis of number of students are temporarily "sold" to an outside sponsor. The sponsor reimburses the university for these resources in the form of indirect costs. Our present budgeting system for indirect costs is based on the premise that our appropriation includes excess resources and, thus, that we can sell services and facilities to a sponsor without the need for reimbursement. Assuming that the original enrollment-based appropriation represents not an excess, but the amount necessary to meet the operating needs of the institution, then those resources sold and reimbursed must be replaced. Using an analogy, if the enrollment driven budget allocation provides for ten rooms or ten people and one person or one room is temporarily "sold" under grant or contract to a sponsor, then the reimbursement costs should be available to the institution for replacing the room or person, in order to maintain the same level of resources originally allocated on the basis of enrollment.

With our present budgeting system, where indirect costs are treated as a revenue source, institutions with large contract and grant activity provide a much higher part of their budget from the indirect cost source. In addition, our present budgeting system for indirect costs provides no incentive to increase research and educational service funded by outside sponsors because these activities drain resources originally allocated on the basis of enrolled students.

The present system of treating indirect costs has been in effect for the las: three bienniums of the legislature. Prior to that time, indirect costs recovered were made available to the institutions and were used to provide replacement resources for those expended in support of grants and contracts. The documentation that resources are expended and should be replaced is implicit in the concept of indirect costs in that these costs are audited annually by a federal agency, and the appropriate amount that sponsors should reimburse the universities is determined annually.

Several of our neighboring states have maintained the principle that indirect costs recovered should be used by the grantee institution to replace resources expended on grants and contracts. Over the past two years, some of our neighboring states have moved in the direction of using indirect costs to replace resources on grants and contracts, recognizing that an institution funded on the basis of enrollment can not expend a large part of its enrollment driven resources without replacement. The following is a list of neighboring states with a summary of the current budgetary method of treating indirect costs. Several of these states have developed their present approach within the last year.

1. Idaho - 100% of indirect costs recovered are retained by the institutions in a restricted account with no closing date. Expenditures from this account must be in general relation to those budget areas that generated the indirect costs.
2. North Dakota - 100% of the recovered indirect costs are retained by the institution in a restricted account with no termination date.
3. South Dakota - 100% of recovered indirect costs are retained by the institution and placed in a restricted account with no termination date.
4. Nebraska - the first $\$ 700,000$ in indirect costs recovery is treatec as revenue and appropriated by the state. Indirect costs recovered above that figure are retained by the institution as replacement funds for research related activities.
5. Wyoming - 60% of indirect costs recovered are an offset to general revenue in meeting the state budget. 40% is retained by the University in a restricted account without termination date.
6. Colorado - Each institution is provided a targeted figure based on the percentage of cost incurred by grant programs. 62.5% of indirect costs recoveries above the targeted figure are available to the institutions for research related expenditures that will not be built into the budgeted base.
7. New Mexico - 20\% of indirect costs recoveries are appropriated by the legislature. The remaining 80% is available to the institution for research related expenditures.
8. Utah - Certain specific overhead related costs are identified and these are paid from indirect costs recoveries. These expenditures are in addition to the normal enrollment driven budget. Indirect costs recovered above this amount are divided with 25% available to the institution for research related expenditures and 75% as an offset to the general fund appropriation.

RCM/cjt
9/3/80

VISITORS' REGISTER
HOUSE JOINT APPROPRIATION - SUBCOMMITTEE
ON EDUCATION
4 LL REGENTS PROGRAM MODIFICATIONS Date February 12, 1981 eNSOR

IF YOU CARE TO WRITE COMMENTS, ASK SECRETARY FOR LONGER FORM.

VISITORS' REGISTER
house font Grpapsiation Subcommittee

- ill Resents Proprín inrlifuation Date 12 Z

IF YOU CARE TO WRITE COMMENTS, ASK SECRETARY FOR LONGER FORM.

HOUSE \qquad COMMITTEd
${ }^{\top}$ LL
Date \qquad
ONSOR

IF YOU CARE TO WRITE COMMENTS, ASK SECRETARY FOR LONGER FORM.

[^0]: PCD
 Revised 1/22/81

